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Abstract: - In the present paper, an overall model for the study of a reactive polymer flow across a 

heterogeneous porous medium is proposed. A moment representation is used to simulate the polymer transport 

and reaction processes in a two dimensional porous medium. The 2D, multiphase polymer flow model is based 

on a mass-transport equation for multicomponent species and is coupled with kinetic models of the gelation 

process using an operator splitting scheme. This model leads to using method of line technique to solve the set 

of equations. 
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I. INTRODUCTION 
                The flow of reactive polymers through porous media is of interest to engineers because of practical 

applications such as hydraulic fracturing, materials impregnation, and filtration processes [1]. For example, 

reactive resins are used during the production of certain types of composite materials. How the liquid phase 

moves through the matrix is essential to these applications. The dynamics of reactive polymer flow in porous 

media is difficult to model, especially for heterogeneous materials. The traditional approach to modeling 

aqueous solutions of reactive polymers in porous media has been to consider the polymer as a single-component 

species [2, 3]. However, most polymers are polydisperse, and the transport properties of lower and higher 

molecular weight species are known to be different. In order to effectively model polymer transport and gelation 

in porous media, it is important to address effects associated with polydispersity and evolution of the molecular 

weight distribution (MWD) due to crosslinking reactions. An approach for modeling polymer reactions is to use 

the polymer MWD, which can be described by moments of that distribution. In this work, we describe a new 

method for modeling reactive polymer flow in heterogeneous porous materials. We use a moment representation 

of the log-/normal polymer MWD to model polymer as a multi-component species. The 2D, two-phase polymer 

flow model is based on a mass-transport equation for multi-component species. It is coupled with kinetic models 

of the crosslinking process by using an operator splitting scheme. 

 

II. MODELING 
2.1 MODELING OF FLOW IN POROUS MEDIA 

                The modeling of flow in porous media is required in a number of chemical engineering processes. A 

continuum representation of porous media is typically used in which the conservation equations are combined 

with the necessary constitutive equations for transport. The flow of two fluid phases (wetting and non-wetting) 

can be described by the continuity equation and Darcy’s equation for each fluid phase as: 

 

= -                                                                                                                                 (1) 

                                                                                                                  (2) 

Where the subscript α indicates the various phases in the system. Here we assume α takes the values w 

and nw (wetting and non-wetting). The relative permeabilities are strong functions of pore structure and 

saturation, and can also depend on saturation history, capillary number, and viscosity ratio, the saturations of the 

fluid phases are related by , and the pressures of different fluid phases are related by the capillary 

pressure:  

1.   
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2.2 MODELING OF REACTIVE TRANSPORT IN POROUS MEDIA  

              The modeling of reactive transport in porous media is challenging because of the dynamic coupling that 

can occur between flow, reaction, and pore structure. The general convection-dispersion-reaction equations for 

multi-component systems can be written for each phase as: 

 

                                                                                                (3) 

 

Where the subscript i denotes a solute species (or in this application, a discrete range of polymer 

molecular weights). Normally, the partial differential equations for transport without the reaction term are 

solved by Eulerian methods, for example finite difference or finite element methods; a grid or mesh is 

constructed representing the spatial domain, and then concentrations are updated by stepping through time. An 

accurate solution of Eq. (3) requires that the reaction and transport terms be coupled at some level, because they 

affect each other. Several methods have been proposed to solve the coupled set of equations. One of them can be 

written as: 

 

                                                                                                                                                  (4) 

 

                                                                                                                                                  (5) 

Where L is the spatial operator. The sequential iteration approach (SIA), where iteration is performed 

between the reaction and transport calculations, has been suggested to reduce the operator splitting errors; this 

approach can be numerically unstable. 

 

2.3 METHOD OF MOMENTS  

             In most polymeric fluids, polymer chain length is a distribution, which we denote [ ] by and (i=1,∞) 

the molar concentration of species of length i [4]. The polymer chain length distribution can be described by 

moments ( ):  

 

                                                                                                                                               (6) 

 

We are interested in understanding how polymer transport in porous media is affected by in-situ 

crosslinking reactions. Conceptually we address this problem by solving a system of equations given by Eq. (3), 

for i=(1, N) where N is the total number of solute species including cross-linker, all discrete ranges of polymer 

weights, and any other components that may be present in the flow. In this formulation, we make the following 

assumptions. First, the polymer is a dilute, aqueous-phase solution. Second, the MWD of polymer is a log-

/normal distribution. Third, we assume that the crosslinking reaction proceeds by a stepwise polymerization 

mechanism.  

 

2.4 GOVERNING EQUATIONS 

            Assuming that all the chemical species are transported by the aqueous phase (wetting phase) only, the 

mass conservation equations can be written as: 

 

                                                    (7) 

 

Where  is mass concentration of component i (i=1,2, …, N), and is the mass concentration of component i 

adsorbed on porous medium surface. The term D describes either diffusion or dispersion; for most convective 

porous medium flows, hydrodynamic dispersion is dominant, which means D should be defined as a tensor 

rather than a scalar to account for anisotropy. We retain the scalar form here for simplicity, noting that it is 

straightforward to incorporate the tensor form in the numerical equations. The left-hand side of Eq. (7) describes 

the time rate of change of solute and adsorbed species, respectively. The three terms on the right-hand side of 

the equation describe diffusion/dispersion, convection and reaction, respectively. 

 

2.5 GELATION REACTION KINETICS  

              A simple polymer and cross linker gelation model is used for the kinetics. /is polymer, and X was 

considered as cross linker [5]:  
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                                                                                                (8) 

 

 

Since the focus of the current work is modeling the dynamics of flow and reaction we have used generalized 

auxiliary equations, which can be changed for specific situations as information is available. 

 

2.6 NUMERICAL SOLUTION  

               To have a numerical solution of these equations, we suppose the linear reactions and then we find k 

(the reaction coefficient) with a try and error method. The numerical model has been built within MATLAB, so 

we can use the method of line for this reason. We convert the PDEs to many ODEs whit the loops of this 

program. The accuracy of these equations is , and the method of Rung- cutta  order has been used. 

Since the transport and reaction steps are solved explicitly, parameters must be updated before beginning a new 

time step. The most difficult issue to contend with is determining how in-situ crosslinking affects the 

morphology of the porous medium, specifically for cases where gel formation occurs because the formation of 

gel has a dramatic impact on hydraulic conductivity. 

  

III. RESULTS AND DISCUSSIONS 
To effectively model reactive polymer flow in porous media, it is important to understand the sensitivity of 

various parameters in the model. 

  

3.1 FORM OF THE MWD  

                One of the most important limitations of this modeling technique is how well a given mathematical 

distribution can represent a true polymer weight distribution. This issue is especially significant if mixing of 

different compositions occurs so as to create distributions with anomalies such as multiple peaks. Four polymer 

MWDs frequently encountered in practice are Wesslau log-normal, Lansing log-/normal, Poisson, and most-

probable Distributions [6]. In our work, we use a log-/normal MWD, which is the empirical form of the Wesslau 

distribution. In our model, we assume that the polymer MWD remains log_/normal during the transport 

processes. This restriction imposes limitations on the amount of mixing that can occur from different regions in 

the porous media because the mixed distributions may not be log-/normal. 

As an extreme example, consider two distributions:  and 

  ,  shown in "Fig1.", which are mixed in volume fractions 

 . The mixed distribution is shown in "Fig2.". For comparison, the first three moments of 

the true mixed distribution were calculated and used in the log- normal function, which is also shown in 

"Fig2."Clearly the mixed distribution cannot be described using a log-/normal equation, and if a practical case 

exhibits this type of mixing, additional considerations will have to be made in the modeling approach. 

 

 
Figure1. Two log-/normal distributions. 
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Figure2. Mixed distribution of the two log-/normal distributions. 

 

3.2 MOBILE POLYMER TRANSPORT  

               During the species transport step, only the mobile fraction of the MWD is allowed to flow, while the 

highest-molecular weight species are considered to be part of the gel phase. Meanwhile, the mass of immobile 

phase polymer should remain constant during the transport calculations of a time-step. However, the use of the 

compromised distribution usually causes an apparent increase in the mass of immobile polymer. "Fig3." shows 

an example for a representative grid block undergoing transport. It contains the pre-transport distribution, the 

post-transport distribution, and the log-/normal distribution calculated directly from the discretized distribution. 

In this example, the apparent change in the mass of immobile phase due to this approximation was 67.7%. 

We have investigated a number of techniques for minimizing this conversion error. The approach that appears to 

be most effective is to calculate new moments from the discretized distribution as initial values, and then to 

perform an optimization procedure to search for an optimal log-/normal distribution to best approximate the new 

distribution after transport. This optimization minimizes the least-squares error in the difference between true 

post-transport concentrations and the concentrations found from the log-normal equation. "Fig4." shows the 

results of this optimization. 

 

 
Figure3. The concentration distributions and the distribution using moments of the post- transport curve. 

 



A Comprehensive and Numerical Modeling of Reactive Polymer  Flow in Porous Media 

International organization of Scientific Research                                             36 | P a g e  

 
Figure4. The results of the optimization of the concentrations found from the log-normal equation. 

 

3.3 TIME-STEP SIZE 

               Time-step size plays a unique role in this model because of differing effects in the transport versus 

reaction parts of the algorithm. If the time-step is large the normal truncation errors associated with the finite 

difference method become significant. If it is small, repeated discretization are required, which causes 

cumulative error in the distribution. The polymer concentration distributions in grid-blocks (10, 10) and (10, 30) 

at different times are shown in "Fig5." and "Fig6.", respectively. Grid-block (10, 30) is located in a high-

permeability region, while grid-block (10, 10) is in a low permeability region. 

 
Figure5. Concentration distribution of polymer components. 
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Figure6. Concentration distribution of polymer components. 

 

By comparing "Fig5." and "Fig6.", it is noted that polymer in the high-permeability region has a higher 

concentration and is more polydisperse at early times. This is a transient effect. At long times, the polymer 

MWD in the lower-permeability region becomes much broader because of the longer residence times for fluids 

flowing here.  

 

IV. CONCLUSION 
                In this work, a mathematical model for two-phase flow of aqueous, reactive polymer solutions was 

developed. Polydispersity effects have been incorporated by using three leading moments to represent the 

polymer MWD. From a numerical standpoint, this is significant because only a few finite moments are needed 

to describe polymer transport and reaction (rather than a very large number of polymer species). Yet, order-of 

magnitude changes in molecular weight are accounted for accurately. The mass-transport equations for multi-

component species coupled with kinetic models of the gelation process are solved using an operator splitting 

scheme, in which the grid-block conditions are updated according to both flux and reaction in that order. Within 

each gridblock, the kinetic model is that of a batch-reactor. The polymer MWD is chosen to be log-/normal and 

is forced to remain log-/normal during the transport and reaction processes. 
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